Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2

MAX-PLANCK-INSTITUT FÜR CHEMIE

Yang Wang, Thomas Wagner and CINDI-2 HONO study team

Max Planck Institute for Chemistry, Mainz, Germany

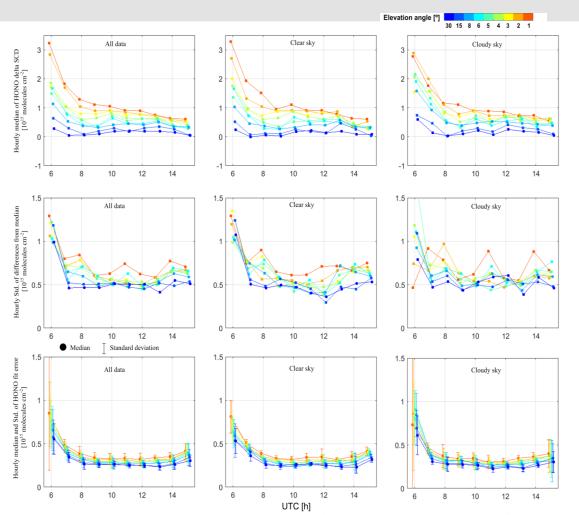
26.02.2019

Overview:

- \triangleright Inter-comparison results of tropospheric HONO \triangle SCDs
- ➤ Inter-comparison results of tropospheric HONO vertical profiles
- Sensitivity studies of HONO profile retrievals based on synthetic ΔSCDs
- Conclusion

Comparison schemes and participants for HONO ΔSCDs

Comparisons of HONO Δ SCDs retrieved with the "daily noon FRS" and the "sequential FRS":


13 Participants for "**daily noon FRS**": BIRA, Boulder, MPIC, AIOFM, NIWA(1) (instrument #29), NIWA (2) (#30), DLR (1) (#13), DLR (2) (#14), USTC (1) (#13), USTC (2) (#14), CMA, BSU, AMOIAP.

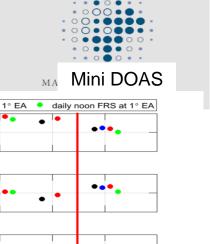
13 Participants for "**sequential FRS**": BIRA, Boulder, MPIC, AIOFM, NIWA(1), NIWA (2), DLR (1), DLR (2), USTC (1), USTC (2), CMA, CSIC, LMU.

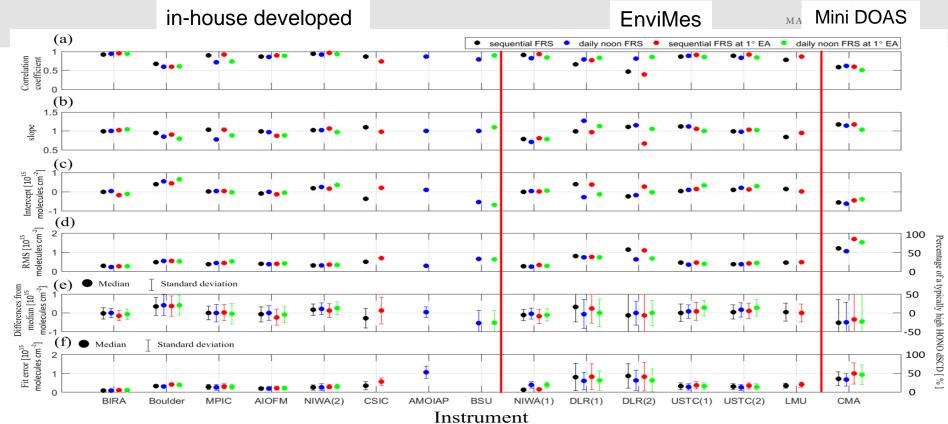
Inter-comparison results of tropospheric HONO Δ SCDs: Statistic inter-comparisons

Main findings:

Median HONO ΔSCDs: peak value at 6 UTC and steep decrease afterwards; large spread along elevation angles (EA)

Std of data from median values:


- a. Peak values ($\sim 1.2 \times 10^{15}$ molecules cm⁻²) at 6 UTC; usually $\sim 0.6 \times 10^{15}$ molecules cm⁻².
- o. relative difference of 40-100% at 1° and 200%-400% at 30° EA


Fit errors: generally smaller than standard deviations by 40% to 100%, but similar diurnal variations.

Cloud effects: slightly larger std of differences and fit errors

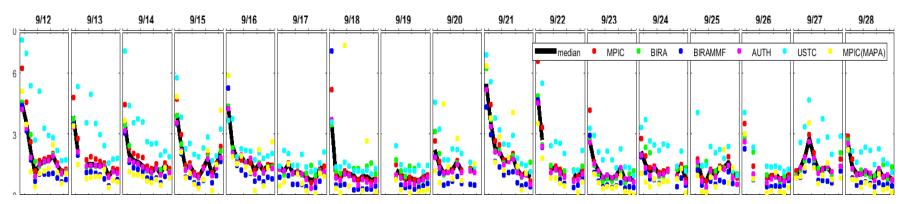
Note that: only coincident results of 2D and 1D system (first 15 min of each hour) are included; sky conditions are derived from the MPIC MAX-DOAS measurements using the MPIC sky cloud classification scheme.

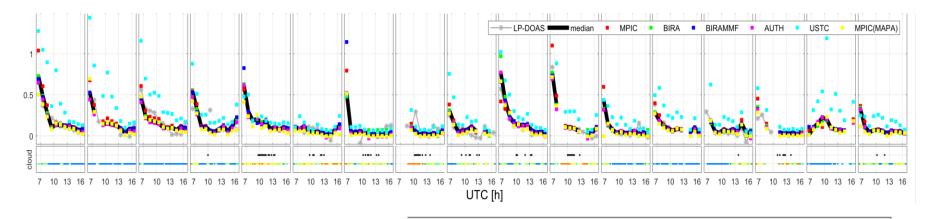
Comparison results for individual data sets

Following: RMS (linear regression) -> Random discrepancies; median differences, slopes, and intercepts-> systematic differences of all data, large values, low values.

Main findings: Mostly systematic discrepancies $<\pm 0.3 \times 10^{15}$ molec. cm⁻² (typically 15% of a large \triangle SCDs of 2 $\times 10^{15}$ molec. cm⁻²), random discrepancies around $<\pm0.6$ $\times10^{15}$ molec. cm⁻² (typically 30%); large discrepancies of CMA (mini MAX-DOAS); substantially larger biases of both "DLR" than both "USTC", but from the same spectra, indicating effects of implementation of DOAS fits by individual analysts; generally negligible effects of using two different FRS; similar results between for 1° and all EA; Similar RMS with DOAS fit error indicating contribution of instrumental noise to random discrepancies.

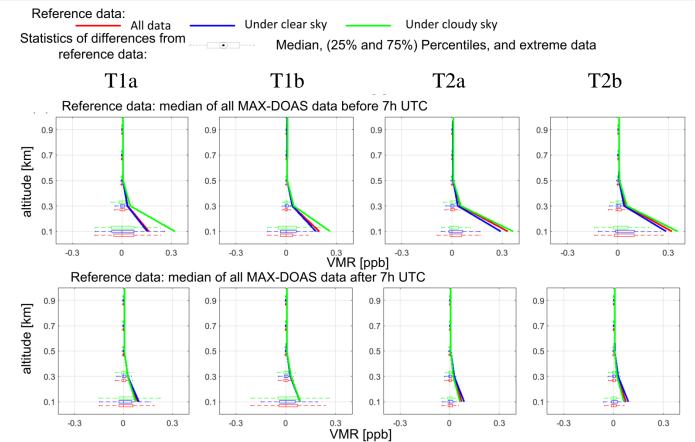
Comparison schemes and participants for HONO profiles


Task title	Task activity	participants
T1a	Retrieve profiles from the HONO ΔSCDs	MPIC (PriAM), BIRA (BePro),
	retrieved from individual instruments	CMA, AIOFM (PriAM), USTC (1)
	with the "sequential FRS".	(HePro), USTC (2) LMU (3M)
T1b	Retrieve profiles from the HONO ΔSCDs	MPIC, BIRA, CMA, AIOFM,
	retrieved from individual instruments	USTC (1) ,USTC (2)
	with the "daily noon FRS".	
T2a	Retrieve profiles from the common HONO	MPIC, BIRA, BIRA MMF, AUTH,
	ΔSCDs using common aerosol profiles	USTC
T2b	Retrieve profiles from the common HONO	MPIC, BIRA, BIRA MMF (MMF),
	ΔSCDs using retrieved aerosol profiles	AUTH (HePro), USTC (HePro),
	from the common O ₄ delta SCDs	MPIC(MAPA)

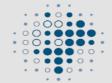

Overview of VCD and near-surface VMRs in Task T2b (common HONO and O₄ SCD)

HONO VCDs

Surface HONO VMRs



Inter-comparison results of tropospheric HONO vertical profiles: Statistic inter-comparisons

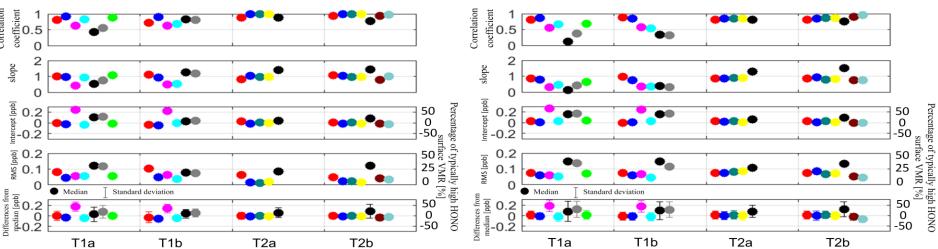


HONO accumulated near the surface.


MAPA not included

discrepancies are much larger in the lowest altitude range of 0 to 0.2 km than at high altitudes.

Individual comparison results of near-surface VMRs



Comparisons with the median values:

For Task 1, both systematic and random discrepancies are mostly in $\sim \pm 0.1$ ppb ($\sim 20\%$ of a typical large VMR).

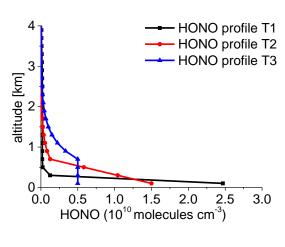
For Task 2, both systematic and random discrepancies are mostly in $\sim \pm 0.02$ ppb (typically $\sim 5\%$).

-> Diff. of \triangle SCDs dominate discrepancies of profile results;

For Task 2, extreme discrepancies of ~ 0.1 ppb (typically $\sim 25\%$) (USTC). -> implementations of profile inversion algorithms by analysts could also cause comparable discrepancies with those caused by discrepancies of Δ SCDs.

Effects of FRS selections and aerosol retrievals on discrepancies of HONO profile results are not significant.

Comparisons with the LP-DOAS values:


Similar RMS (random discrepancies) and median differences (systematic discrepancies) with the comparisons with the median values. For Task 2, considerable overestimation is only found for the USTC data.

Sensitivity studies of HONO profile retrievals based on synthetic $\Delta SCDs$

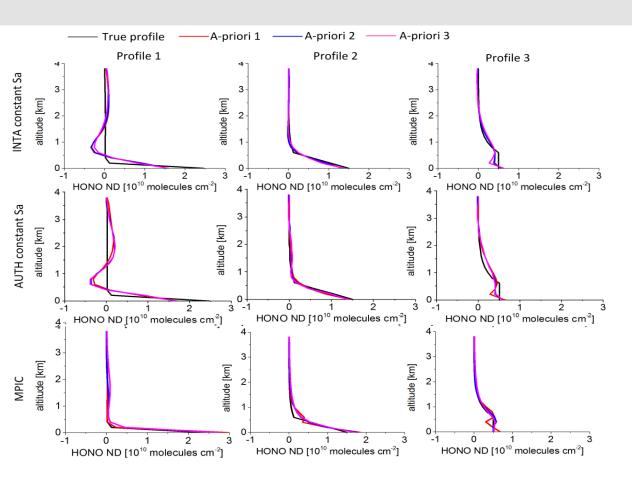
Synthetic HONO delta SCDs are generated by Bremen using the RTM SCIATRAN, version 3.6.0:

- geometries according to the real measurements on 14/09/2016
- in a pseudo-spherical atmosphere with pure Rayleigh scattering
- Three HONO profiles with a typical temperature and pressure profile during the campaign

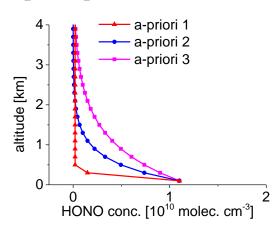
Participants: INTA and AUTH using the "BePro" algorithm; MPIC using "PriAM"

Differences of the two algorithms:

PriAM: nonlinear optimal estimation and logarithmic space


BePro: linear optimal estimation

logarithmic space causes different Sa in PriAM and BePro:


In BePro, diagonal elements of Sa at altitude z is square of 100% a-priori at z <-> In PriAM, diagonal elements at all altitudes are unity.

Sensitivity studies of HONO profile retrievals based on synthetic Δ SCDs

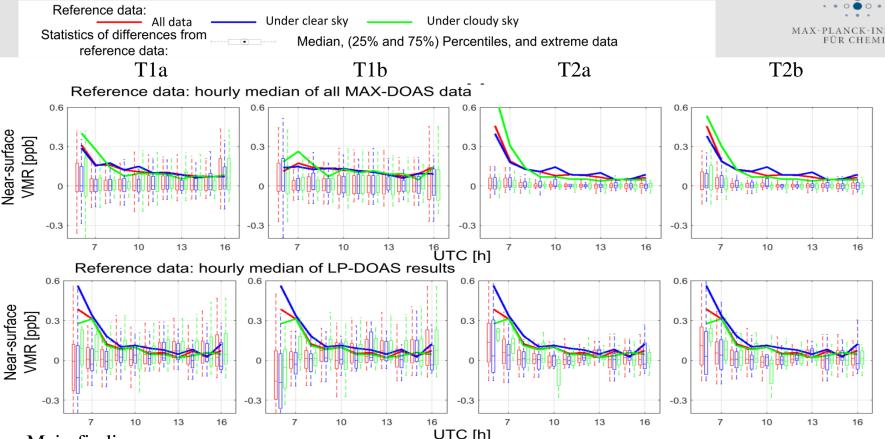
A priori profiles:

INTA and AUTH (BePro): results considerably deviate from real profiles due to a-priori constants

MPIC (PriAM): well consistent no matter which a-priori is used

"constant Sa" for BePro: Sa diagonal values are set as a constant value at all altitudes, which is square of 100% of the a-priori value in the lowest altitude grid.

If constant Sa used for BePro: much less dependent on a-priori profiles.


Conclusion:

- HONO ΔSCDs: systematic and random discrepancies are typically in 15% and 30% of a large delta SCD of 2 × 10¹⁵ molec. cm⁻².
 HONO near-surface VMRs: systematic and random discrepancies are mostly in ~ 20% of a typical large VMR of 0.5 ppb. Profile retrievals normally contribute discrepancies of 5%, remaining discrepancies are mainly due to discrepancies of HONO ΔSCDs.
- Inappropriate implementations of DOAS fits and profile inversion algorithms can cause 2 times larger discrepancies.
- Effects of clouds and the FRS selections on discrepancies of HONO Δ SCDs and profile results are not critical.
- Synthetic analysis indicates: profile inversion algorithms developed based on the optimal estimation method with proper configurations (Sa) can well respond to different HONO profile shapes.
- The first version of the paper will be sent around in the next few weeks.

Statistic inter-comparisons of near-surface HONO VMRs

Differences of near-surface VMRs from the median values:

For T1a and T1b, VMR diff. mostly in -0.04 to 0.08 ppb; For T2a and T2b, VMR diff. mostly in ± 0.02 ppb; -> Diff. of \triangle SCDs dominate discrepancies of profile results;

Comparisons with LP-DOAS:

A large percent of data are lower than LP-DOAS at 6 UTC by up to 0.3 ppb (~75%) in T1a and T1b.

Cloud effects on discrepancies are not significant.

Main findings: